
 1

Algorithms and Data Structures for Haptic Rendering:

Curve Constraints, Distance Maps, and Data Logging
Dan Morris

Stanford University Robotics Lab
Computer Science Department

Stanford, CA 94305-9010

dmorris@cs.stanford.edu

ABSTRACT

In this paper, we describe three novel data processing techniques

used for haptic rendering and simulation:

 We present an approach to constraining a haptic device to

travel along a discretely-sampled curve.

 We present an approach to generating distance maps from

surface meshes using axis-aligned bounding box (AABB)

trees. Our method exploits spatial coherence among

neighboring points.

 We present a data structure that allows thread-safe, lock-free

streaming of data from a high-priority haptic rendering

thread to a lower-priority data-logging thread.

We provide performance metrics and example applications for

each of these techniques. C++-style pseudocode is provided

wherever possible and is used as the basis for presenting our

approaches. Links to actual implementations are also provided

for each section.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Interfaces –

Haptic I/O; H.5.1 [Information Interfaces and Presentation]:

Multimedia Information Systems

General Terms

Algorithms, Human Factors

Keywords

Haptics, haptic rendering, virtual fixtures, distance maps,

synchronization, threads, voxelization, flood-filling, kd-tree,

curve constraints

1. INTRODUCTION
Applications incorporating haptic feedback are subject to

significant performance constraints; it is generally accepted that

an application needs to sustain a 1kHz haptic update rate before

sampling effects become perceptible.

This stringent computation-time limitation requires careful

consideration of the design and implementation of preprocessing,

rendering, and data streaming techniques. In this paper, we

present three techniques for optimized haptic data processing,

each in an individual section of the paper. Section 2 will discuss

the implementation of a haptic curve constraint, or “virtual

fixture”, using kd-trees. Section 3 will discuss the rapid (offline)

generation of exact signed distance fields for surface meshes.

Section 4 will discuss a threaded data structure for lock-free

streaming of data from a high-priority haptic rendering thread to a

lower-priority disk-interaction thread.

2. HAPTIC CURVE CONSTRAINTS

2.1 Background
Haptic devices generally provide a user with three or six degrees

of freedom. Haptic feedback, however, offers the possibility of

dynamically reducing the effective degrees of freedom available

within the device‟s workspace via virtual constraints.

Non-penetration constraints associated with surfaces are

extremely common and are used in nearly every haptic simulation

involving interaction with rigid objects, but other types of

constraints have been applied using haptic devices as well.

Abbott et al [1] propose “virtual fixtures” to assist in dexterous

manipulation; the goal is to reduce the degrees of freedom

involved in a complex task and/or to restrict a device‟s motion to

a “safe” portion of the workspace. This may be particularly

suitable for robotic surgery applications in which an actuated

master can assist the surgeon by restricting the movement of the

slave. The authors discuss multiple types of fixtures, including a

“guidance virtual fixture” (GVF), which is a constraint associated

with a 3D curve. Garroway and Hayward [2] constrain the user to

an analytic curve to assist in editing a spatial trajectory.

In both of these cases, it is assumed that the closest point on the

curve to the current haptic probe position and/or the distance to

that point are readily available, either by analytic computation or

by explicitly tracking the progress of the haptic probe along the

curve.

2.2 Discretized Curve Constraints
For some applications, particularly those where constraints can be

dynamically added and removed, it may be necessary to constrain

a user to a curve beginning at an arbitrary starting point, or to

recover when the constraint has been significantly violated. It is

thus necessary to rapidly find the closest point on a curve to the

current haptic probe position.

In addition, analytic representations are not always available for

curves; curves are most generally represented as discretely-

sampled, ordered point sets rather than analytic functions. This is

particularly useful, for example, for haptic training applications

(e.g. [3,4,5]), in which one might use previously-recorded

trajectories as teaching examples.

We thus provide a rapid method for finding the closest point on a

discretely-sampled curve to a current probe position. We also

present an approach to tracking the constraint position on a curve

 2

when the haptic device may deviate from the constraint and

approach other points on the curve to which it should not become

constrained. Tying the haptic device to this constraint position by

a virtual spring will provide a general-purpose curve constraint.

A curve is assumed to be represented as a series of N points, each

of which stores its 3-dimensional position, an index into a linked-

list or flat array that stores the N points in order, and its

arcposition along the curve (the curve runs from arcposition 0.0 to

arcposition 1.0). The curve is not required to have a uniform

sampling density. Each point pi (for i 0 and i (N-1)) is

implicitly part of two line segments, [pi-1 pi] and [pi pi+1].

For clarity, I will provide C++ pseudocode of the relevant data

structures and computations throughout this section, beginning

with the representation of the curve and sample points. The

„vector‟ class is assumed to represent a 3-dimensional vector and

to support the expected operators.

struct curvePoint {

 vector pos;

 unsigned int index;

 float arcpos;

};

struct curve {

 unsigned int N;

 curvePoint* points;

};

All of these points are then placed in a standard kd-tree [6] (a

3d-tree in this case). A kd-tree stores a point set and provides

efficient retrieval of the subset of points that lie within a bounding

rectangle. This can be generalized at minimal cost to return the

approximate nearest K neighbors to a given test point. We will

assume that our kd-tree provides the following function, which

returns the K points closest to testPoint:

void search(

vector testPoint,

int K, curvePoint* points);

At each timestep at which a haptic constraint force is requested,

we use this interface to find the N closest points to the device

position pdev. N is chosen empirically; higher values of N require

more computation time but reduce the occurrence of incorrect

forces resulting from sparse sampling of the curve. Figure 1

demonstrates this problem and illustrates why using N=1 does not

generally give correct results.

// Get the points closest to the device

vector pdev = getDevicePosition();

curvePoint neighbors[N];

myKDTree.search(pdev, N, neighbors);

The N returned points are sorted by index, and for each returned

point pi we build the two associated line segments ([pi-1 pi] and

[pi pi+1]) and insert them into an ordered list of candidate line

segments that might contain the closest point to our haptic probe.

This ordering reduces redundancy; we now have a maximum of

(but generally less than) 2N line segments to search. We can

compactly represent each line segment as its first index, so we can

store the candidate set as an ordered, non-redundant list of

indices:

// Sort the candidate line segments by index

std::set<unsigned int> candidateSegments;

for(unsigned int i=0; i<N; i++)

 candidateSegments.insert(neighbors[i]);

Now for each of those candidate segments, we compute the

smallest distance between our device position pdev and the

segment, using the approach presented (and available online) in

[7]. We assume we have a function distanceToSegment that

takes a test position and a segment defined by the indices of its

two endpoints and returns the corresponding distance and point of

closest approach (as a t-value, where 0.0 is the segment start and

1.0 is the segment endpoint). We find the segment with the

smallest distance to the haptic device point:

// Find the point of closest approach among

// all candidate segments

struct distanceRecord {

 int segmentIdx;

 float t;

 float distance;

};

float shortestDistance = FLT_MAX;

distanceRecord closest;

std::set<unsigned int>::iterator iter;

// Loop over all candidate segments

for(iter=candidateSegments.begin();

 iter != candidateSegments.end(); iter++) {

 int index = *iter;

 float t;

 // What’s the smallest distance to this

 // segment?

 float distance =

 distanceToSegment(pdev,index,index+1,t);

 distanceRecord dr(index,t,distance);

 // Is this the smallest distance

 // we’ve found so far (to any segment)?

 if (distance < shortestDistance) {

1

2

3

4

5

6

device

Figure 1. The device should be constrained to the segment

between vertices 1 and 2, but sparse sampling of the curve

places it closer to vertex 4 than to either of these vertices.

This motivates the use of a broader nearest-neighbor search to

handle this case properly.

 3

 closest = dr;

 shortestDistance = distance;

 }

}

For most curves, it is now sufficient to simply apply a constraint

force pulling the device toward the closest point on the closest

segment with stiffness kconstraint:

// Generate a constraint force pulling

// the haptic device toward the closest

// point on the curve

vector start =

 myCurve.points[closest.segmentIdx].pos;

vector end =

 myCurve.points[closest.segmentIdx +1].pos;

vector closestPoint =

 start + (end - start) * closest.t;

vector force =

 kconstraint * (closestPoint – pdev);

This approach, however, fails in the case illustrated in Figure 2.

Here, due to normal deviation from the constraint path (resulting

from limited stiffness), the device passes through vertex 4 on its

way between vertices 1 and 2, but should still be constrained to

segment [1,2] to guide the user along the correct curve shape.

This can be handled by a modification to our distance-

computation function, which takes into account the arcdistance of

the point to which the haptic device was most recently

constrained. Essentially, when choosing the closest point on the

curve, we want to penalize points that are far from the test point

both in Euclidean distance and in arclength.

We assume that the distance computation function is provided the

arcposition of the point to which the device was previously

constrained (or a flag indicating that this is a new constraint and

there is no previous state, in which case the distance returned is

just the usual Euclidean distance). For each segment we process,

we find the closest point on that segment to the haptic device and

compute the corresponding Euclidean distance as usual. We then

take the absolute difference in arcposition between this point and

the previous constraint point, multiply it by an empirically-

selected penalty factor, and return this weighted “score” as our

distance value in the above routine (this pseudocode replaces the

distance computation in the above routine):

// known from our previous iteration

float previousArcPos;

float distance = distanceToSegment(pdev,

 index,index+1,t);

// Find the arcposition of the closest

// point of approach on this segment

float newArcPos =

 (myCurve.points[index].arcpos*t)

 +

 (myCurve.points[index+1].arcpos*(1.0–t));

// Find the arcdistance between this test

// point and my previous constraint position

float arcidst =

 fabs(previousArcPos – newArcPos);

// Weight our 'distance' value according to

// this arcposition.

distance = distance +

 arcidst * ARC_PENALTY_WEIGHT;

Higher values of ARC_PENALTY_WEIGHT maximally

eliminate “jumping” along the curve (Figure 2). However,

inappropriately high values may cause friction-like effects as the

user rounds sharp corners in the curve and is prevented from

“jumping” around corners when he should be allowed to move to

subsequent segments. We have found this effect to be

imperceptible for a wide range of values of

ARC_PENALTY_WEIGHT (see Section 2.3).

2.3 Implementation and Results
The above algorithm was implemented in C++ using the public-

domain kd-tree available in [8], a Phantom haptic device [9], and

the CHAI 3D libraries for haptics and visualization [10]. Curves

were generated according to [5], with 2000 points. N (number of

nearest neighbors to search) was set to 100, with the arc penalty

weight set to 1.0.

1

2

3

4

5

6

device

1

2

3

4

5

6

device

Figure 2. The device passes through vertex 4 on its way

between vertices 1 and 2, but should still be constrained to

segment [1,2] to guide the user along the correct curve shape.

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
-4

-3

-2

-1

0

1

2

3

4

X Position (cm)

Z
 P

o
s
it

io
n

 (
c
m

)

Curve

Constraint position

Device position

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
-4

-3

-2

-1

0

1

2

3

4

X Position (cm)

Z
 P

o
s
it

io
n

 (
c
m

)

Curve

Constraint position

Device position

Figure 3. Black lines indicate correspondences between device

position (green) and constraint position (red). The highlighted

areas show regions where the device approached a region on

the curve that was distant in terms of arclength and was thus

appropriately constrained to the current curve segment,

despite being physically closer to the “incorrect” segment.

 4

Figure 3 demonstrates the robustness of our approach. We see the

actual path of the device in green, constrained by force vectors

(indicated in black) to the curve. We see several regions

(highlighted in blue) where the device very closely approaches a

region of the curve that is distant from the current constraint

position in terms of arclength, and the constraint position

correctly remains on the current region of the curve.

For the constant values presented above, mean computation time

per haptic iteration on a 1GHz Pentium 4 was 0.2ms, well below

the accepted perceptual threshold of 1ms per haptic computation.

Figure 4 shows the dependence of computation time on the

number of samples in the trajectory for a fixed N (number of

neighbors used in constraint search). We see that even with very

large trajectories (up to two million samples), computation time is

well below 1ms. Figure 5 shows the dependence of computation

time on N (number of neighbors used in constraint search) for a

fixed trajectory size. Although this increase is also approximately

linear, there is a much more expensive constant factor associated

with increasing N, since this increases the number of floating-

point distance computations.

As a final point, we note that our distance-computation function

generates the closest point returned from each point/segment

comparison, so this is the only part of our overall approach that

would need to be modified to represent line segments as Bezier

curve segments or other interpolation functions.

An implementation of the algorithm discussed here is included as

part of our “haptic mentoring” experimental platform [5],

available at:

http://cs.stanford.edu/~dmorris/haptic_training

3. DISTANCE MAP GENERATION

3.1 Terminology
For an object O on n and a set of points P on n, the distance

field is defined as the smallest distance from each point in P to a

point on O. The distance metric is generally Euclidean distance,

but any symmetric, non-negative function satisfying the triangle

inequality can serve as a distance metric. The distance map is the

distance field annotated with the position of the closest point on

O for each point in P. When O is an orientable surface (a surface

that partitions n into two subspaces), the sign of the stored

distance at a point indicates the subspace in which that point lies

(in particular, this sign is often used to indicate whether a point is

inside or outside a closed surface O). The distance transform

takes a set of points P and an object O and annotates P with a

distance map on O. The closely-related closest-point transform

takes a set of points P and an object O and annotates each point in

P with the location of the closest point on O, without distance

information. The closest-point transform is computed by

definition whenever a distance map is generated.

3.2 Background
The distance map is an implicit object representation with

extensive applications in computer graphics, for example in

physical simulation [13] and isosurface generation [14].

Distance maps have also been applied in haptics, to search for

collisions between a haptic tool and the environment [15], to

provide constraint forces when navigating a volume [16], and to

constrain a surface contact point to the boundary of a region [17].

Several methods have been proposed for computing distance

fields, distance maps, and closest point transforms. Many

applications in computer animation use the approximate but

extremely efficient Fast Marching Method [18]. [19] proposes a

method based on Voronoi regions and local rasterization, and

provides an open-source implementation [20]. More recently,

approaches have emerged that use parallel graphics hardware to

accelerate distance field computation [21].

We propose an alternative method for generating exact distance

maps from point sets to triangle meshes that leverages bounding-

box structures, which are already generated as a preprocessing

step for many interactive applications in haptics and graphics.

3.3 Distance Map Generation
The following procedure assumes that we are given a list of points

P, preferably sorted in an order that promotes spatial coherence

(this is generally the case in practice, where regular voxel grids

are used as the point set and sorting is trivial). We are also given

a set of triangles M, which represent one or more logical objects

in a scene.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

N (number of neighbors used)

M
e
d

ia
n

 f
o

rc
e
 c

o
m

p
u

ta
ti

o
n

 t
im

e
 (

m
s
)

Figure 5. Increase in computation time with increasing N

(number of neighbors used), trajectory size fixed at 2000.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Millions of trajectory samples

M
e
d

ia
n

 f
o

rc
e
 c

o
m

p
u

ta
ti

o
n

 t
im

e
 (

m
s
)

Figure 4. Increase in computation time with increasing

trajectory size, N (number of neighbors used) fixed at 100.

The increase is approximately linear, but even with two

million samples, the computation time is well under 1ms.

http://cs.stanford.edu/~dmorris/haptic_training

 5

We further assume that a bounding-volume hierarchy has been

built on M. A strength of this approach is that it leverages

common bounding-volume techniques, which are used in a variety

of existing applications in haptics and graphics. Without loss of

generality, we will assume that the hierarchy is composed of axis-

aligned bounding boxes (AABB‟s). Further details on the

construction and characteristics of AABB trees can be found in

[22].

The general approach to finding the closest point on M to a point

Pi in P is to descend the AABB tree, computing lower and upper

bounds on the distance to each box we descend, and tracking the

lowest upper bound dlu we‟ve encountered so far (the lowest

“guaranteed” distance). If the lower bound for a box is farther

from Pi than dlu, we can skip this box (see Figure 6). Using this

culling approach and exploiting spatial coherence among

subsequent points in P by selectively mixing breadth-first and

depth-first examination of our bounding volume hierarchy, we can

build distance maps in a manner that is both efficient and heavily

parallelizable.

In the following pseudocode, we assume without loss of

generality that the AABB tree representing our triangle mesh is in

the same coordinate frame as our point list; in practice coordinate

transformations are performed before distance computation

begins. We also assume for clarity of terminology that the list of

points P is a series of voxel locations (this is the case when

computing the distance transform on a regular grid), so we refer to

the Pi‟s as “voxels” and locations on the surface M as “points”.

// A simple AABB tree hierarchy

// A generic tree node maintaining only a

// parent pointer. This pseudocode avoids

// pointer notation; all links within the

// tree and all references to AABBNode’s in

// the code should be read as pointers.

struct AABBNode { AABBNode parent; };

// A structure representing a bounding box

// and pointers to child nodes.

struct AABBox : public AABBNode {

 // the actual bounding box

 vector3 xyzmax, xyzmin;

 // my children in the AABB tree

 AABBNode left, right;

}

// A structure representing a leaf node

struct AABBLeaf : public AABBNode {

 triangle t;

}

// The inputs to our problem

// The Pi’s

std::list<vector3> voxels;

// The triangle set M, pre-processed into

// an AABB tree

AABBox tree_root;

// All the boxes we still need to look at

// for the current voxel. This may not be

// empty after a voxel is processed; placing

// nodes here to be used for the next voxel

// is our mechanism for exploiting spatial

// coherence.

std::list<AABBNode> boxes_to_descend;

// The smallest squared distance to a

// triangle we’ve seen so far for the

// current voxel...

//

// We generally track squared distances,

// which are faster to compute than actual

// distances. When all is said and done,

// taking the square root of this number

// will give us our distance value for this

// voxel.

float lowest_dist_sq = FLT_MAX;

// The point associated with this distance

vector3 closest_point;

// The tree node associated with the closest

// point. We store this to help us exploit

// spatial coherence when we move on to our

// next voxel.

//

// This will always be a leaf.

AABBNode closest_point_node;

// The lowest upper-bound squared distance

// to a box we’ve seen so far for the

// current voxel.

float lowest_upper_dist_sq = FLT_MAX;

// Process each voxel on our list, one

// at a time...

std::list<vector3>::iterator iter =

 voxels.begin();

while (iter != voxels.end) {

Box A

Upper-bound distance

for box B

Lower-bound distance

for box B

Box D

Box C

Box B

Upper-bound distance

for box A

Lower-bound distance

for box A

Pi

Box A

Upper-bound distance

for box B

Lower-bound distance

for box B

Box D

Box C

Box B

Upper-bound distance

for box A

Lower-bound distance

for box A

Pi

Figure 6. Distance transformation for point Pi. If we’ve

processed Box A before we process Box B, we will not descend

to Box B’s children, because Box B’s lower-bound distance is

greater than Box A’s upper-bound distance.

 6

 // Grab the next point

 vector3 v = (*iter);

 // Now we’re going to find the closest

 // point in the tree (tree_root) to v...

 //

 // See below for the implementation of

 // find_closest_point.

 find_closest_point(v);

 // Now output or do something useful

 // with lowest_dist_sq and closest_point;

 // these are the values that should be

 // associated with v in our output

 // distance map...

 do_something_useful();

 // So it’s time to move on to the next

 // voxel. We’d like to exploit spatial

 // coherence by giving the next voxel

 // a "hint" about where to start looking

 // in the tree. See the explanation below

 // for what this does; the summary is that

 // it seeds 'boxes_to_descend' with a

 // good starting point for the next voxel.

 seed_next_voxel_search();

}

// Find the closest point in our mesh to

// the sample point v

void find_closest_point(vector3 v) {

 // Start with the root of the tree

 boxes_to_descend.push_back(tree_root);

 while(!(boxes_to_descend.empty)) {

 AABBNode node =

 boxes_to_descend.pop_front();

 process_node(node,v);

 }

}

// Examine the given node and decide whether

// we can discard it or whether we need to

// visit his children. If it’s a leaf,

// compute an actual distance and store

// it if it’s the closest so far.

//

// Used as a subroutine in the main voxel

// loop (above).

void process_node(AABBNode node, vector3 v){

 // Is this a leaf? We assume we can get

 // this from typing, or that the actual

 // implementation uses polymorphism and

 // avoids this check.

 bool leaf = isLeaf(node);

 // If it’s a leaf, we have no more

 // descending to do, we just need to

 // compute the distance to this triangle

 // and see if it’s a winner.

 if (leaf) {

 // Imagine we have a routine that finds

 // the distance from a point to a

 // triangle; [7] provides an optimized

 // routine with a thorough explanation.

 float dsq;

 vector3 closest_pt_on_tri;

 // Find the closest point on our

 // triangle (leaf.t) to v, and the

 // squared distance to that point.

 compute_squared_distance(v,leaf.t,

 dsq,closest_pt_on_tri;

 // Is this the shortest distance so far?

 if (dsq < lowest_dist_sq) {

 // Mark him as the closest we’ve seen

 lowest_dist_sq = dsq;

 closest_point = clost_pt_on_tri;

 closest_point_node = node;

 // Also mark him as the "lowest upper

 // bound", because any future boxes

 // whose lower bound is greater than

 // this value should be discarded.

 lowest_upper_dist_sq = dsq;

 }

 // This was a leaf; we’re done with him

 // whether he was useful or not.

 return;

 }

 // If this is not a leaf, let’s look at

 // his lower- and upper-bound distances

 // from v.

 //

 // Computing lower- and upper-bound

 // distances to an axis-aligned bounding

 // box is extremely fast; we just take

 // the farthest plane on each axis

 float best_dist = 0;

 float worst_dist = 0;

 // If I'm below the x range, my lowest

 // x distance uses the minimum x, and

 // my highest uses the maximum x

 if (v.x < node.box.xyzmin.x) {

 best_dist += node.box.xyzmin.x - v.x;

 worst_dist += node.box.xyzmax.x - v.x;

 }

 // If I'm above the x range, my lowest x

 // distance uses the maximum x, and my

 // highest uses the minimum x

 else if (v.x > node.box.xyzmax.x) {

 best_dist += v.x - node.box.xyzmax.x;

 worst_dist += v.x - node.box.xyzmin.x;

 }

 // If I'm _in_ the x range, x doesn't

 // affect my lowest distance, and my

 // highest-case distance goes to the

 // _farther_ of the two x distances

 else {

 float dmin =

 fabs(node.box.xyzmin.x - v.x);

 float dmax =

 7

 fabs(node.box.xyzmax.x - v.x);

 double d_worst = (dmin>dmax)?dmin:dmax;

 worst_dist += d_worst;

 }

 // Repeat for y and z...

 // Convert to squared distances

 float lower_dsq = best_dist * best_dist;

 float upper_dsq = worst_dist * worst_dist;

 // If his lower-bound squared distance

 // is greater than lowest_upper_dist_sq,

 // he can’t possibly hold the closest

 // point, so we can discard this box and

 // his children.

 if (lower_dsq > lowest_upper_dist_sq)

 return;

 // Check whether I’m the lowest

 // upper-bound that we’ve seen so far,

 // so we can later prune away

 // non-candidate boxes.

 if (upper_dsq < lowest_upper_dist_sq) {

 lowest_upper_dist_sq = upper_dsq;

 }

 // If this node _could_ contain the

 // closest point, we need to process his

 // children.

 //

 // Since we pop new nodes from the front

 // of the list, pushing nodes to the front

 // here results in a depth-first search,

 // and pushing nodes to the back here

 // results in a breadth-first search. A

 // more formal analysis of this tradeoff

 // will follow in section 3.4.

 boxes_to_descend.push_front(node.left);

 boxes_to_descend.push_front(node.right);

 // Or, for breadth-first search...

 // boxes_to_descend.push_back(node.left);

 // boxes_to_descend.push_back(node.right);

}

When we‟ve finished a voxel and it‟s time to move on to the next

voxel, we‟d like to exploit spatial coherence by giving the next

voxel a “hint” about where to start looking in the tree. We expect

the node that contains the closest point to the next voxel to be a

“near sibling” of the node containing the closest point to the

current voxel, so we‟ll let the next voxel‟s search begin at a

nearby location in the tree by walking a couple nodes up from the

best location for this voxel.

The constant TREE_ASCEND_N controls how far up the tree we

walk to find our “seed point” for the next voxel. Higher values

assume less spatial coherence and require more searching in the

case that the next voxel is extremely close to the current voxel.

Lower values assume more spatial coherence and optimize the

case in which subsequent voxels are very close, while running a

higher risk of a complete search.

Section 3.4 discusses the selection of an optimal value for

TREE_ASCEND_N.

void seed_next_voxel_search() {

 // Start at the node that contained our

 // closest point and walk a few levels

 // up the tree.

 AABBNode seed_node = closest_point_node;

 for(int i=0; i<TREE_ASCEND_N; i++) {

 if (seed_node.parent == 0) break;

 else seed_node = seed_node.parent;

 }

 // Put this seed node on the search list

 // to be processed with the next voxel.

 boxes_to_descend.push_back(seed_node);

}

In summary, for each voxel in Pi we track the lowest upper-bound

distance that we‟ve found for a box as we descend our AABB

tree, and discard boxes whose lower-bound distance is larger.

When we reach a leaf node, we explicitly compute distances and

compare to the lowest distance we found so far. We exploit

spatial coherence when processing a voxel by first searching a

small subtree in which we found the closest point for the previous

voxel.

3.4 Implementation and Results
The approach presented here was evaluated in the context of

generating internal distance fields (finding and processing only

voxels that lie inside a closed mesh) during the process of

voxelization. Voxelizer is an application written in C++ that loads

meshes and uses a flood-filling process to generate voxel

representations of those meshes, optionally including distance

fields. Both the flood-filling and the distance-field generation use

the public-domain AABB tree available in CHAI [10].

To evaluate the suitability of our approach and the benefit of our

exploitation of spatial coherence, we generated voxel arrays and

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 7. Meshes used for evaluating distance map

computation. (a) Gear: 1000 triangles. (b) Happy: 16000

triangles. (c) Dragon: 203000 triangles (d) Bunny: 70,000

triangles.

 8

distance fields for a variety of meshes (Figures 7 and 8) at a

variety of voxel densities and a variety of values for

TREE_ASCEND_N (see above). Furthermore, at each parameter

set, we generated distance fields using both depth- and breadth-

first search. The following sections discuss the performance

results from these experiments.

OVERALL PERFORMANCE

Table 1 shows the computation time for flood-filling and distance-

field generation for each of the four test meshes at a variety of

resolutions. The voxel arrays generated represent surface and

internal voxels only; the full distance field for voxels outside the

mesh is not generated. “Long axis resolution” indicates the

number of voxels into which the longest axis of the mesh‟s

bounding-box is divided; voxels are isotropic so the resolutions of

the other axes are determined by this value.

We note that for small resolutions, on the order of 30 voxels,

times for distance computation are interactive or nearly

interactive, even for complex meshes. We also note that in

general, distance computation represents the significant majority

of the total time required to perform the combined flood-filling

and distance-field generation (on average, distance-field

generation represents 86% of the total time).

Figure 9 shows the dependence of computation time on long axis

resolution for all four meshes. As expected, all meshes display an

exponential increase in computation time as voxel resolution

increases, but even at very high resolutions, computation time is

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Long axis mesh resolution (voxels)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

bunny (70k tris)

gear (1k tris)

happy (16k tris)

dragon (203k tris)

Figure 9. Performance of our distance-map computation

approach on all four meshes at a variety of mesh resolutions.

Mesh Triangles Long axis resolution Voxels Total time (s) Distance time (s)

bunny 70k 30 7168 0.736 0.683

bunny 70k 75 95628 6.107 5.282

bunny 70k 135 529024 29.033 25.258

bunny 70k 195 1561728 82.341 71.585

gear 1k 30 4156 0.144 0.117

gear 1k 75 54270 1.751 1.383

gear 1k 135 286813 9.228 7.282

gear 1k 195 829321 27.137 21.387

happy 16k 30 2020 .13495 .1177

happy 16k 75 25308 1.387 1.208

happy 16k 135 132910 6.132 5.261

happy 16k 195 381120 16.956 14.48

dragon 203k 30 2550 0.494 0.47

dragon 203k 75 31674 3.158 2.859

dragon 203k 135 164061 11.839 10.558

dragon 203k 195 468238 30.13 26.633

Table 1. A comparison of flood-filling and distance-computation times for all four meshes at a variety of voxel resolutions.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 8. The same meshes displayed in Figure 7, after using

the voxelizer application to identify internal voxels (voxel

centers are in green for surface voxels and red for internal

voxels) by flood-filling. The long axis resolution in each case

here is 50 voxels.

 9

tractable for preprocessing applications (only above one minute

for one of the four meshes and only above a long axis resolution

of 180 voxels).

SPATIAL COHERENCE

To analyze the benefit of exploiting spatial coherence in distance-

map computation, and to identify the optimal value of

TREE_ASCEND_N (the number of tree levels to step up in

generating a “hint” location for the next voxel‟s distance search),

voxel arrays and distance fields were generated for all four meshes

with various values of TREE_ASCEND_N. Figure 10 shows the

results for the “happy” mesh (this mesh was chosen arbitrarily;

results were similar for all four meshes). A TREE_ASCEND_N

value of -1 indicated that spatial coherence was not exploited at

all; i.e. every distance search started at the top of the tree. A value

of 0 indicated that the “hint” node was the leaf node (a single

triangle) that contained the shortest distance for the previous

voxel.

Exploting spatial coherence yields five-fold improvement in

performance (a reduction in distance field time from 62 seconds to

13 seconds) for the largest resolution shown in Figure 10. This

corresponds to the difference between TREE_ASCEND_N values

of 0 and 1. Further increasing TREE_ASCEND_N does not

further improve performance; it is clear in Figure 10 that zero is

the optimal value. This is equivalent to assuming that locality

extends as far as the closest triangle; it isn‟t worth searching

neighboring AABB nodes as well before searching the whole tree.

DEPTH- VS. BREADTH-FIRST SEARCH

To compare the use of depth- and breadth-first distance search,

voxel arrays and distance fields were generated for all four meshes

using each approach. Figure 11 shows the results when using the

optimal TREE_ASCEND_N value of 0. Depth-first search is

consistently better, but by a very small margin.

When spatial coherence is not exploited – which serves as a

surrogate for the case in which the point set is not sorted and does

not provide strong spatial coherence – depth-first search performs

significantly better. This is illustrated in Figure 12, which shows

results for the “happy” mesh at various resolutions with no

assumption of spatial coherence.

IMPLEMENTATION AVAILABILITY

A binary version of this application, with documentation and the

models used in these experiments, is available online at:

http://cs.stanford.edu/~dmorris/voxelizer

Voxelizer is currently used to generate the voxel meshes used in

[23]; distance fields are used to shade voxels based on their

distances to anatomic structures.

Future work will include leveraging the obvious parallelism

available in this approach; voxels are processed nearly

independently and could easily be distributed across machines

with a nearly linear speedup. Furthermore, the simple nature of

the computations performed here makes this suitable to

parallelization across simple processing units, such as those

available on commercial GPU‟s, which have been successfully

used to process AABB-based collision queries by [24]. We

would also like to explore the performance impact of using other

bounding-volume hierarchies (e.g. oriented-bounding-box trees

and sphere trees), which fit trivially into our framework.

-1 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

TREE_ASCEND_N value

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

Long axis voxels: 30

Long axis voxels: 75

Long axis voxels: 135

Long axis voxels: 195

Figure 10. Performance benefit of exploiting spatial coherence

and optimal value selection for TREE_ASCEND_N (results

shown here are for the “happy” mesh). A value of -1 indicated

that spatial coherence was not exploited at all. A value of 0

indicated that the “hint” node was the leaf node (a single

triangle) that contained the shortest distance for the previous

voxel.

20 40 60 80 100 120 140 160 180 200
0

5

10

15

Long axis mesh resolution (voxels)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

Breadth-first

Depth-first

Figure 11. Comparison of depth- and breadth-first search for

the “happy” mesh using a TREE_ASCEND_N value of 0

(optimal).

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Long axis mesh resolution (voxels)

C
o

m
p

u
ta

ti
o

n
 t

im
e
 (

s
)

Breadth-first

Depth-first

Figure 12. Comparison of depth- and breadth-first search for

the “happy” mesh using a TREE_ASCEND_N value of -1 (no

exploitation of spatial coherence).

http://cs.stanford.edu/~dmorris/voxelizer

 10

4. HAPTIC DATA LOGGING

4.1 Background
It is conventionally accepted that a user will begin to notice

discretization artifacts in a haptic rendering system if the system‟s

update rate falls below 1kHz. Furthermore, as a haptic

application‟s update rate falls, the system becomes more prone to

instability and constraint violation. With this in mind, it is

essential that designers of haptic software structure applications to

allow high-bandwidth, low-latency generation of haptic forces.

There are two relevant implications of this requirement. First of

all, haptic computation must run on a thread that allows

computation at 1kHz. This is non-trivial on single-CPU systems

running non-real-time operating systems, which typically have

thread timeslices of 15ms or more. In other words, naively

sharing the CPU among a haptic application thread and other

application or system threads will not nearly provide the necessary

performance. Boosting thread and process priority is a simple

solution that is offered by common OS‟s, but indiscriminately

boosting thread priority can prevent other application tasks (e.g.

graphic rendering) and even critical operating system services

from running. Common solutions to this problem include using

dual-CPU PC‟s, boosting thread priority while manually ensuring

that the persistent haptic loop will yield periodically, and/or using

hardware-triggered callbacks to control the rate of haptic force

computation.

Additionally, this stringent performance constraint means that

“slow” tasks (those that require more than one millisecond on a

regular basis) cannot be placed in the critical path of a haptic

application. Graphic rendering, for example, is often

computationally time-consuming and is generally locked to the

refresh rate of the display, allowing a peak throughput of

approximately 30Hz on most systems (lower if the graphical scene

is particularly complex). For this reason, nearly all visuohaptic

applications decouple graphic and haptic rendering into separate

threads.

Disk I/O is another task that incurs high latencies (often over

10ms), particularly when bandwidth is high. For a haptic

application that requires constantly logging haptic data to disk –

such as a psychophysical experiment involving a haptic device – it

is essential to place blocking disk I/O on a thread that is distinct

from the haptic rendering thread.

Using this common scheme, data synchronization between a

haptic thread (which collects position data from the haptic device,

computes forces, and sends forces to the device) and a “slow”

thread (handling graphics and disk I/O) can become a bottleneck.

Traditional locks allow the slow thread to block the haptic thread,

and if the locked region includes a high-latency operation, the

haptic thread can stall for an unacceptable period. Many

applications are able reduce the data exchanged among threads to

a few vectors or small matrices, and forego synchronization

entirely since the probability and impact of data conflicts are rare.

Data logging tasks, however, cannot take this approach. Even

small errors resulting from race conditions can place data files in

an unrecoverable state. Furthermore, the high bandwidth of data

flow increases the probability of conflicts if data queued for file

output is stored in a traditional linked list. We thus present a data

structure that allows lock-free synchronization between a

producer thread and a consumer thread, with the constraint that

the consumer thread does not need to access data immediately

after the data are produced. The only synchronization primitive

required is an atomic pointer-sized write, provided by all current

hardware. This structure does not address sleeping; it‟s assumed

that the producer never sleeps (it‟s a high-priority loop).

Periodically waking the consumer – who might sleep – is a trivial

extension.

We present this approach in the context of a haptic application,

but it‟s equally applicable to other applications with similar

threading structures, for example neurophysiological and

psychophysical experiments. For example, the implementation

discussed here is used by the software presented in [11], which is

used in the experiments presented in [12].

4.2 Data Structure
The data structure presented is labeled a “blocked linked list”

(BLL). The BLL is a linked list of blocks of data records; the

list‟s head pointer is manipulated only by the consumer, and the

list‟s tail pointer is manipulated only by the producer. The BLL is

initialized so that the head and tail pointers point to a single

block. In pseudocode:

struct bll_record {

 // the relevant data structure is defined

 // here; in practice the BLL is templated

 // and this structure is not explicitly

 // defined

};

struct bll_block {

 // the data stored in this block

 bll_record data[BLOCK_SIZE];

 // how many data records have actually

 // been inserted?

 int count=0;

 // conventional linked list next pointer

 bll_block* next=0;

};

struct BLL {

 // conventional linked list head/tail ptrs

 bll_block *head,*tail;

 // initialize to a new node

 BLL() { head = tail = new bll_block; }

};

The BLL offers the following interface:

// This function is called only by the

// producer (haptic) thread to insert a new

// piece of data into the BLL.

void BLL::push_back(bll_record& d) {

 // If we’ve filled up a block,

 // allocate a new one. There’s no

 // risk of conflict because the

 11

 // consumer never accesses the tail.

 if (tail->count == BLOCK_SIZE) {

 bll_block* newtail = new bll_block;

 newtail->next = tail;

 // After this, I can never touch

 // the old tail again, since

 // the consumer could be using it

 tail = newtail;

 }

 // Insert the new data record

 tail->data[count] = d;

 count++;

}

// This function is called only by the

// consumer (logging) thread to flush

// all available data to disk

void BLL::safe_flush() {

 // If the tail pointer changes during

 // this call, after this statement,

 // that’s fine; I’ll only log up to

 // the tail at this instant. I can’t

 // access ‘tail’ directly for the rest

 // of this call.

 bll_block* mytail = tail;

 // If there are no filled blocks, this

 // loop won’t run; no harm done.

 while(head != mytail) {

 // Dump this whole block to disk or

 // perform other high-latency operations

 fwrite(head->data,

 sizeof(bll_record),BLOCK_SIZE,myfile);

 // Increment the head ptr and clean up

 // what we’re done with

 bll_block oldhead = head;

 head = head->next;

 delete oldhead;

 }

};

The central operating principle is that the push_back routine

only accesses the current tail; when the tail is filled, a new block

becomes the tail and this routine never touches the old tail again.

The safe_flush routine flushes all blocks up to but not

including the current tail. If the current tail changes during this

routine‟s execution, it may leave more than one block unflushed,

but it will not conflict with the producer‟s push_back routine.

These two routines comprise the important components of the

data structure; required but not detailed here are additional

initialization routines and a “tail flush” routine that flushes the

current tail block and can be run when the producer is

permanently finished or has downtime (the pseudocode above

never flushes the last, partially-filled block). The BLL also

presents an O(N) routine for safe random element access by the

consumer thread, allowing access to elements up to but not

including the head block.

4.3 Implementation and Results
A template-based, C++ implementation of this data structure is

available at:

http://cs.stanford.edu/~dmorris/code/block_linked_list.h

This implementation was used in [5], [11], and [12], and

introduced no disk latency on the high-priority haptic/experiment

threads.

BLOCK_SIZE is a performance variable; in practice it is also

templated but it need not be the same for every block. Higher

values improve bandwidth on the consumer thread, since larger

disk writes are batched together and allocated memory is more

localized, but may result in larger peak latencies on the consumer

thread (due to larger writes). Higher values of BLOCK_SIZE

also increase the latency between production and consumption. A

BLOCK_SIZE value of 1000 was used in [5], [11], and [12].

ACKNOWLEDGMENTS
Support was provided by NIH LM07295 and the AO Foundation.

The “dragon”, “bunny”, and “happy” models were obtained from

the Stanford 3D Scanning Repository [25]. The “gear” model was

obtained from the TetGen examples page [26].

REFERENCES
[1] Abbott, J., Marayong, P., and Okamura, A. Haptic Virtual

Fixtures for Robot-Assisted Manipulation. 12th International

Symposium of Robotics Research (ISRR), October 2005.

[2] Garroway, D. and Hayward, V. A Haptic Interface for

Editing Space Trajectories. Poster presented at ACM

SIGGRAPH & EuroGraphics Symposium on Computer

Animation. August 2004.

[3] Williams, R.L., Srivastava, M., Conaster, R., and Howell,

J.N. Implementation and Evaluation of a Haptic Playback

System. Haptics-e, Vol. 3, No. 3, May 3, 2004.

[4] Feygin, D., Keehner, M., and Tendick, F. Haptic Guidance:

Experimental Evaluation of a Haptic Training Method for a

Perceptual Motor Skill. Proceedings 10th IEEE Symposium

on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, March 2002.

[5] Morris, D., Tan, H.Z., Barbagli, F., Chang, T., and Salisbury,

K. Haptic Training Enhances Force Skill Learning. IEEE

World Haptics, Tsukuba, Japan, March 2007.

[6] Bentley, J. L. Multidimensional binary search trees used for

associative searching. Communications of the ACM 18, 9

(Sep. 1975), 509-517.

[7] Schneider, P. and Eberly, D.H. Geometric Tools for

Computer Graphics. Morgan-Kauffman, 2003. Relevant

source:

http://www.geometrictools.com/Foundation/Distance/

Wm3DistVector3Segment3.cpp

http://cs.stanford.edu/~dmorris/code/block_linked_list.h
http://www.geometrictools.com/Foundation/Distance/Wm3DistVector3Segment3.cpp
http://www.geometrictools.com/Foundation/Distance/Wm3DistVector3Segment3.cpp

 12

http://www.geometrictools.com/Foundation/Distance/Wm3D

istVector3Triangle3.cpp

[8] Mount, D.M. and Arya, S. ANN: A library for approximate

nearest neighbor searching. CGC 2nd Annual Fall

Workshop on Computational Geometry, 1997. Available at

http://www.cs.umd.edu/~mount/ANN .

[9] Massie, T.H., and Salisbury, J.K. The PHANTOM Haptic

Interface: A Device for Probing Virtual Objects. Symp. on

Haptic Interfaces for Virtual Environments. Chicago, IL,

Nov. 1994.

[10] Conti, F., Barbagli, F., Morris, D., and Sewell, C. CHAI: An

Open-Source Library for the Rapid Development of Haptic

Scenes Demo paper presented at IEEE World Haptics, Pisa,

Italy, March 2005.

[11] Morris, D. TG2: A software package for behavioral

neurophysiology and closed-loop spike train decoding.

Technical documentation, 2006. Available at

http://cs.stanford.edu/~dmorris/projects/tg2_description.pdf

[12] Ojakangas, C.L., Shaikhouni, A., Friehs, G.M., Caplan,

A.H., Serruya, M.D., Saleh, M., Morris, D.S., Donoghue,

J.P. Decoding movement intent from human premotor cortex

neurons for neural prosthetic applications. Journal of Clinical

Neurophysiology, December 2006, Volume 23, Issue 6,

p577-584.

[13] Fisher, S. and Lin, M. Fast Penetration Depth Estimation for

Elastic Bodies Using Deformed Distance Fields. IROS 2001.

[14] Varadhan, G., Krishnan, S., Sriram, T,, and Manocha, D.

Topology Preserving Surface Extraction Using Adaptive

Subdivision. Eurographics Symposium on Geometry

Processing, 2004.

[15] McNeely, W.A., Puterbaugh, K.D., and Troy, J.J. Voxel-

Based 6-DOF Haptic Rendering Improvements. Haptics-e,

vol. 3, 2006.

[16] Bartz, D. and Guvit, O. Haptic Navigation in Volumetric

Datasets. Second PHANToM Users Research Symposium,

Zurich, Switzerland, 2000.

[17] Kim, L., Sukhatme, G., and Desbrun, M. A haptic rendering

technique based on hybrid surface representation. IEEE

Computer Graphics and applications, March 2004.

[18] Sethian, J.A. A fast marching level set method for

monotonically advancing fronts. In Proc. Nat. Acad. Sci.,

volume 93 of 4, pages 1591-1595, 1996.

[19] Mauch, S. Efficient Algorithms for Solving Static Hamilton-

Jacobi Equations. PhD thesis, 2003.

[20] Closest Point Transform (open-source software):

http://www.acm.caltech.edu/~seanm/projects/cpt/cpt.html

[21] Sud, A., Otaduy, M., and Manocha, D. DiFi: Fast 3D

Distance Field Computation Using Graphics Hardware.

Eurogrpahics 2004.

[22] Cohen, J.D., Lin, M.C., Manocha, D., and Ponamgi M. I-

COLLIDE: An Interactive and Exact Collision Detection

System for Large-Scaled Environments. Proc. ACM

Symposium on Interactive 3D Graphics, pp. 189-196, 1995

[23] Morris, D., Girod, S., Barbagli, F., and Salisbury, K. An

Interactive Simulation Environment for Craniofacial Surgical

Procedures. Proceedings of MMVR (Medicine Meets Virtual

Reality) XIII, Long Beach, CA, January 2005. Studies in

Health Technology and Informatics, Volume 111.

[24] Thrane, N. and Simonsen, L.O. A comparison of acceleration

structures for GPU assisted ray tracing. Master‟s thesis,

University of Aarhus, Denmark, 2005.

[25] http://graphics.stanford.edu/data/3Dscanrep/

[26] http://tetgen.berlios.de/fformats.examples.html

http://www.geometrictools.com/Foundation/Distance/Wm3DistVector3Triangle3.cpp
http://www.geometrictools.com/Foundation/Distance/Wm3DistVector3Triangle3.cpp
http://www.cs.umd.edu/~mount/ANN
http://cs.stanford.edu/~dmorris/projects/tg2_description.pdf
http://www.acm.caltech.edu/~seanm/projects/cpt/cpt.html
http://graphics.stanford.edu/data/3Dscanrep/
http://tetgen.berlios.de/fformats.examples.html

