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ABSTRACT 

In this paper, we describe three novel data processing techniques 

used for haptic rendering and simulation: 

 We present an approach to constraining a haptic device to 

travel along a discretely-sampled curve. 

 We present an approach to generating distance maps from 

surface meshes using axis-aligned bounding box (AABB) 

trees.  Our method exploits spatial coherence among 

neighboring points. 

 We present a data structure that allows thread-safe, lock-free 

streaming of data from a high-priority haptic rendering 

thread to a lower-priority data-logging thread. 

We provide performance metrics and example applications for 

each of these techniques.  C++-style pseudocode is provided 

wherever possible and is used as the basis for presenting our 

approaches.  Links to actual implementations are also provided 

for each section. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User Interfaces – 

Haptic I/O; H.5.1 [Information Interfaces and Presentation]: 

Multimedia Information Systems 

General Terms 

Algorithms, Human Factors 

Keywords 

Haptics, haptic rendering, virtual fixtures, distance maps, 

synchronization, threads, voxelization, flood-filling, kd-tree, 

curve constraints 

1. INTRODUCTION 
Applications incorporating haptic feedback are subject to 

significant performance constraints; it is generally accepted that 

an application needs to sustain a 1kHz haptic update rate before 

sampling effects become perceptible. 

This stringent computation-time limitation requires careful 

consideration of the design and implementation of preprocessing, 

rendering, and data streaming techniques.  In this paper, we 

present three techniques for optimized haptic data processing, 

each in an individual section of the paper.  Section 2 will discuss 

the implementation of a haptic curve constraint, or “virtual 

fixture”, using kd-trees.  Section 3 will discuss the rapid (offline) 

generation of exact signed distance fields for surface meshes.  

Section 4 will discuss a threaded data structure for lock-free 

streaming of data from a high-priority haptic rendering thread to a 

lower-priority disk-interaction thread. 

2. HAPTIC CURVE CONSTRAINTS 

2.1 Background 
Haptic devices generally provide a user with three or six degrees 

of freedom.  Haptic feedback, however, offers the possibility of 

dynamically reducing the effective degrees of freedom available 

within the device‟s workspace via virtual constraints. 

Non-penetration constraints associated with surfaces are 

extremely common and are used in nearly every haptic simulation 

involving interaction with rigid objects, but other types of 

constraints have been applied using haptic devices as well.  

Abbott et al [1] propose “virtual fixtures” to assist in dexterous 

manipulation; the goal is to reduce the degrees of freedom 

involved in a complex task and/or to restrict a device‟s motion to 

a “safe” portion of the workspace.  This may be particularly 

suitable for robotic surgery applications in which an actuated 

master can assist the surgeon by restricting the movement of the 

slave.  The authors discuss multiple types of fixtures, including a 

“guidance virtual fixture” (GVF), which is a constraint associated 

with a 3D curve.  Garroway and Hayward [2] constrain the user to 

an analytic curve to assist in editing a spatial trajectory. 

In both of these cases, it is assumed that the closest point on the 

curve to the current haptic probe position and/or the distance to 

that point are readily available, either by analytic computation or 

by explicitly tracking the progress of the haptic probe along the 

curve. 

2.2 Discretized Curve Constraints 
For some applications, particularly those where constraints can be 

dynamically added and removed, it may be necessary to constrain 

a user to a curve beginning at an arbitrary starting point, or to 

recover when the constraint has been significantly violated.  It is 

thus necessary to rapidly find the closest point on a curve to the 

current haptic probe position. 

In addition, analytic representations are not always available for 

curves; curves are most generally represented as discretely-

sampled, ordered point sets rather than analytic functions.  This is 

particularly useful, for example, for haptic training applications 

(e.g. [3,4,5]), in which one might use previously-recorded 

trajectories as teaching examples.  

We thus provide a rapid method for finding the closest point on a 

discretely-sampled curve to a current probe position.  We also 

present an approach to tracking the constraint position on a curve 
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when the haptic device may deviate from the constraint and 

approach other points on the curve to which it should not become 

constrained.  Tying the haptic device to this constraint position by 

a virtual spring will provide a general-purpose curve constraint. 

A curve is assumed to be represented as a series of N points, each 

of which stores its 3-dimensional position, an index into a linked-

list or flat array that stores the N points in order, and its 

arcposition along the curve (the curve runs from arcposition 0.0 to 

arcposition 1.0).  The curve is not required to have a uniform 

sampling density.  Each point pi (for i  0 and i  (N-1) ) is 

implicitly part of two line segments, [pi-1  pi] and [pi  pi+1].  

For clarity, I will provide C++ pseudocode of the relevant data 

structures and computations throughout this section, beginning 

with the representation of the curve and sample points.  The 

„vector‟ class is assumed to represent a 3-dimensional vector and 

to support the expected operators. 

struct curvePoint { 

  vector pos; 

  unsigned int index; 

  float arcpos; 

}; 

 

struct curve { 

  unsigned int N; 

  curvePoint* points; 

}; 

 

All of these points are then placed in a standard kd-tree [6] (a 

3d-tree in this case).  A kd-tree stores a point set and provides 

efficient retrieval of the subset of points that lie within a bounding 

rectangle.  This can be generalized at minimal cost to return the 

approximate nearest K neighbors to a given test point.  We will 

assume that our kd-tree provides the following function, which 

returns the K points closest to testPoint: 

void search( 

vector testPoint, 

int K, curvePoint* points);  

 

At each timestep at which a haptic constraint force is requested, 

we use this interface to find the N closest points to the device 

position pdev.  N is chosen empirically; higher values of N require 

more computation time but reduce the occurrence of incorrect 

forces resulting from sparse sampling of the curve.  Figure 1 

demonstrates this problem and illustrates why using N=1 does not 

generally give correct results. 

// Get the points closest to the device 

vector pdev = getDevicePosition(); 

curvePoint neighbors[N]; 

myKDTree.search(pdev, N, neighbors); 

 

The N returned points are sorted by index, and for each returned 

point pi we build the two associated line segments ( [pi-1  pi] and 

[pi  pi+1]  ) and insert them into an ordered list of candidate line 

segments that might contain the closest point to our haptic probe.  

This ordering reduces redundancy; we now have a maximum of 

(but generally less than) 2N line segments to search.  We can 

compactly represent each line segment as its first index, so we can 

store the candidate set as an ordered, non-redundant list of 

indices: 

// Sort the candidate line segments by index 

std::set<unsigned int> candidateSegments; 

for(unsigned int i=0; i<N; i++) 

  candidateSegments.insert(neighbors[i]); 

 

Now for each of those candidate segments, we compute the 

smallest distance between our device position pdev and the 

segment, using the approach presented (and available online) in 

[7].  We assume we have a function distanceToSegment that 

takes a test position and a segment defined by the indices of its 

two endpoints and returns the corresponding distance and point of 

closest approach (as a t-value, where 0.0 is the segment start and 

1.0 is the segment endpoint).  We find the segment with the 

smallest distance to the haptic device point: 

// Find the point of closest approach among 

// all candidate segments 

 

struct distanceRecord { 

  int segmentIdx; 

  float t; 

  float distance; 

}; 

 

float shortestDistance = FLT_MAX; 

distanceRecord closest; 

std::set<unsigned int>::iterator iter; 

 

// Loop over all candidate segments 

for(iter=candidateSegments.begin(); 

  iter != candidateSegments.end(); iter++) { 

 

  int index = *iter; 

  float t; 

 

  // What’s the smallest distance to this  

  // segment? 

  float distance =   

    distanceToSegment(pdev,index,index+1,t); 

  distanceRecord dr(index,t,distance); 

 

  // Is this the smallest distance 

  // we’ve found so far (to any segment)? 

  if (distance < shortestDistance) { 
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Figure 1.  The device should be constrained to the segment 

between vertices 1 and 2, but sparse sampling of the curve 

places it closer to vertex 4 than to either of these vertices.  

This motivates the use of a broader nearest-neighbor search to 

handle this case properly. 
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    closest = dr; 

    shortestDistance = distance; 

  } 

 

} 

 

For most curves, it is now sufficient to simply apply a constraint 

force pulling the device toward the closest point on the closest 

segment with stiffness kconstraint: 

// Generate a constraint force pulling 

// the haptic device toward the closest  

// point on the curve 

 

vector start =  

  myCurve.points[closest.segmentIdx].pos; 

vector end = 

  myCurve.points[closest.segmentIdx +1].pos; 

vector closestPoint = 

  start + (end - start) * closest.t; 

vector force = 

  kconstraint * (closestPoint – pdev); 

 

This approach, however, fails in the case illustrated in Figure 2.  

Here, due to normal deviation from the constraint path (resulting 

from limited stiffness), the device passes through vertex 4 on its 

way between vertices 1 and 2, but should still be constrained to 

segment [1,2] to guide the user along the correct curve shape.  

This can be handled by a modification to our distance-

computation function, which takes into account the arcdistance of 

the point to which the haptic device was most recently 

constrained.  Essentially, when choosing the closest point on the 

curve, we want to penalize points that are far from the test point 

both in Euclidean distance and in arclength. 

We assume that the distance computation function is provided the 

arcposition of the point to which the device was previously 

constrained (or a flag indicating that this is a new constraint and 

there is no previous state, in which case the distance returned is 

just the usual Euclidean distance).  For each segment we process, 

we find the closest point on that segment to the haptic device and 

compute the corresponding Euclidean distance as usual.  We then 

take the absolute difference in arcposition between this point and 

the previous constraint point, multiply it by an empirically-

selected penalty factor, and return this weighted “score” as our 

distance value in the above routine (this pseudocode replaces the 

distance computation in the above routine): 

// known from our previous iteration 

float previousArcPos; 

 

float distance = distanceToSegment(pdev, 

  index,index+1,t); 

 

// Find the arcposition of the closest 

// point of approach on this segment 

float newArcPos = 

  (myCurve.points[index].arcpos*t) 

  + 

  (myCurve.points[index+1].arcpos*(1.0–t)); 

 

// Find the arcdistance between this test  

// point and my previous constraint position 

float arcidst = 

  fabs(previousArcPos – newArcPos); 

 

// Weight our 'distance' value according to 

// this arcposition. 

distance = distance + 

  arcidst * ARC_PENALTY_WEIGHT; 

 

Higher values of ARC_PENALTY_WEIGHT maximally 

eliminate “jumping” along the curve (Figure 2).  However, 

inappropriately high values may cause friction-like effects as the 

user rounds sharp corners in the curve and is prevented from 

“jumping” around corners when he should be allowed to move to 

subsequent segments.  We have found this effect to be 

imperceptible for a wide range of values of 

ARC_PENALTY_WEIGHT (see Section 2.3). 

2.3 Implementation and Results 
The above algorithm was implemented in C++ using the public-

domain kd-tree available in [8], a Phantom haptic device [9], and 

the CHAI 3D libraries for haptics and visualization [10].  Curves 

were generated according to [5], with 2000 points.  N (number of 

nearest neighbors to search) was set to 100, with the arc penalty 

weight set to 1.0. 
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Figure 2.  The device passes through vertex 4 on its way 

between vertices 1 and 2, but should still be constrained to 

segment [1,2] to guide the user along the correct curve shape. 
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Figure 3.  Black lines indicate correspondences between device 

position (green) and constraint position (red).  The highlighted 

areas show regions where the device approached a region on 

the curve that was distant in terms of arclength and was thus 

appropriately constrained to the current curve segment, 

despite being physically closer to the “incorrect” segment. 
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Figure 3 demonstrates the robustness of our approach.  We see the 

actual path of the device in green, constrained by force vectors 

(indicated in black) to the curve.  We see several regions 

(highlighted in blue) where the device very closely approaches a 

region of the curve that is distant from the current constraint 

position in terms of arclength, and the constraint position 

correctly remains on the current region of the curve. 

For the constant values presented above, mean computation time 

per haptic iteration on a 1GHz Pentium 4 was 0.2ms, well below 

the accepted perceptual threshold of 1ms per haptic computation.  

Figure 4 shows the dependence of computation time on the 

number of samples in the trajectory for a fixed N (number of 

neighbors used in constraint search).  We see that even with very 

large trajectories (up to two million samples), computation time is 

well below 1ms.  Figure 5 shows the dependence of computation 

time on N (number of neighbors used in constraint search) for a 

fixed trajectory size.  Although this increase is also approximately 

linear, there is a much more expensive constant factor associated 

with increasing N, since this increases the number of floating-

point distance computations. 

As a final point, we note that our distance-computation function 

generates the closest point returned from each point/segment 

comparison, so this is the only part of our overall approach that 

would need to be modified to represent line segments as Bezier 

curve segments or other interpolation functions. 

An implementation of the algorithm discussed here is included as 

part of our “haptic mentoring” experimental platform [5], 

available at: 

http://cs.stanford.edu/~dmorris/haptic_training 

3. DISTANCE MAP GENERATION 

3.1 Terminology 
For an object O on n and a set of points P on n, the distance 

field is defined as the smallest distance from each point in P to a 

point on O.  The distance metric is generally Euclidean distance, 

but any symmetric, non-negative function satisfying the triangle 

inequality can serve as a distance metric.  The distance map is the 

distance field annotated with the position of the closest point on 

O for each point in P.  When O is an orientable surface (a surface 

that partitions n into two subspaces), the sign of the stored 

distance at a point indicates the subspace in which that point lies 

(in particular, this sign is often used to indicate whether a point is 

inside or outside a closed surface O).  The distance transform 

takes a set of points P and an object O and annotates P with a 

distance map on O.  The closely-related closest-point transform 

takes a set of points P and an object O and annotates each point in 

P with the location of the closest point on O, without distance 

information.  The closest-point transform is computed by 

definition whenever a distance map is generated. 

3.2 Background 
The distance map is an implicit object representation with 

extensive applications in computer graphics, for example in 

physical simulation [13] and isosurface generation [14]. 

Distance maps have also been applied in haptics, to search for 

collisions between a haptic tool and the environment [15], to 

provide constraint forces when navigating a volume [16], and to 

constrain a surface contact point to the boundary of a region [17]. 

Several methods have been proposed for computing distance 

fields, distance maps, and closest point transforms.  Many 

applications in computer animation use the approximate but 

extremely efficient Fast Marching Method [18].  [19] proposes a 

method based on Voronoi regions and local rasterization, and 

provides an open-source implementation [20].  More recently, 

approaches have emerged that use parallel graphics hardware to 

accelerate distance field computation [21]. 

We propose an alternative method for generating exact distance 

maps from point sets to triangle meshes that leverages bounding-

box structures, which are already generated as a preprocessing 

step for many interactive applications in haptics and graphics. 

3.3 Distance Map Generation 
The following procedure assumes that we are given a list of points 

P, preferably sorted in an order that promotes spatial coherence 

(this is generally the case in practice, where regular voxel grids 

are used as the point set and sorting is trivial).  We are also given 

a set of triangles M, which represent one or more logical objects 

in a scene. 
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Figure 5.  Increase in computation time with increasing N 

(number of neighbors used), trajectory size fixed at 2000.   
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Figure 4.  Increase in computation time with increasing 

trajectory size, N (number of neighbors used) fixed at 100.  

The increase is approximately linear, but even with two 

million samples, the computation time is well under 1ms. 

http://cs.stanford.edu/~dmorris/haptic_training
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We further assume that a bounding-volume hierarchy has been 

built on M.  A strength of this approach is that it leverages 

common bounding-volume techniques, which are used in a variety 

of existing applications in haptics and graphics.   Without loss of 

generality, we will assume that the hierarchy is composed of axis-

aligned bounding boxes (AABB‟s).  Further details on the 

construction and characteristics of AABB trees can be found in 

[22]. 

The general approach to finding the closest point on M to a point 

Pi in P is to descend the AABB tree, computing lower and upper 

bounds on the distance to each box we descend, and tracking the 

lowest upper bound dlu we‟ve encountered so far (the lowest 

“guaranteed” distance).  If the lower bound for a box is farther 

from Pi than dlu, we can skip this box (see Figure 6).  Using this 

culling approach and exploiting spatial coherence among 

subsequent points in P by selectively mixing breadth-first and 

depth-first examination of our bounding volume hierarchy, we can 

build distance maps in a manner that is both efficient and heavily 

parallelizable. 

In the following pseudocode, we assume without loss of 

generality that the AABB tree representing our triangle mesh is in 

the same coordinate frame as our point list; in practice coordinate 

transformations are performed before distance computation 

begins.  We also assume for clarity of terminology that the list of 

points P is a series of voxel locations (this is the case when 

computing the distance transform on a regular grid), so we refer to 

the Pi‟s as “voxels” and locations on the surface M as “points”. 

// A simple AABB tree hierarchy 

 

// A generic tree node maintaining only a 

// parent pointer.  This pseudocode avoids 

// pointer notation; all links within the 

// tree and all references to AABBNode’s in 

// the code should be read as pointers. 

struct AABBNode { AABBNode parent; }; 

 

// A structure representing a bounding box 

// and pointers to child nodes. 

struct AABBox : public AABBNode { 

 

  // the actual bounding box 

  vector3 xyzmax, xyzmin; 

 

  // my children in the AABB tree 

  AABBNode left, right; 

} 

 

// A structure representing a leaf node 

struct AABBLeaf : public AABBNode { 

  triangle t; 

} 

 

// The inputs to our problem 

 

// The Pi’s 

std::list<vector3> voxels; 

 

// The triangle set M, pre-processed into 

// an AABB tree 

AABBox tree_root; 

 

// All the boxes we still need to look at 

// for the current voxel.  This may not be 

// empty after a voxel is processed; placing 

// nodes here to be used for the next voxel 

// is our mechanism for exploiting spatial 

// coherence. 

std::list<AABBNode> boxes_to_descend; 

 

// The smallest squared distance to a 

// triangle we’ve seen so far for the  

// current voxel... 

//  

// We generally track squared distances, 

// which are faster to compute than actual  

// distances.  When all is said and done, 

// taking the square root of this number  

// will give us our distance value for this  

// voxel. 

float lowest_dist_sq = FLT_MAX; 

 

// The point associated with this distance 

vector3 closest_point; 

 

// The tree node associated with the closest 

// point.  We store this to help us exploit 

// spatial coherence when we move on to our 

// next voxel. 

// 

// This will always be a leaf. 

AABBNode closest_point_node; 

   

// The lowest upper-bound squared distance  

// to a box we’ve seen so far for the 

// current voxel. 

float lowest_upper_dist_sq = FLT_MAX; 

 

// Process each voxel on our list, one 

// at a time... 

 

std::list<vector3>::iterator iter = 

  voxels.begin(); 

 

while (iter != voxels.end) { 

 

Box A

Upper-bound distance 

for box B

Lower-bound distance 

for box B

Box D

Box C

Box B

Upper-bound distance 

for box A

Lower-bound distance 

for box A

Pi

Box A

Upper-bound distance 

for box B

Lower-bound distance 

for box B

Box D

Box C

Box B

Upper-bound distance 

for box A

Lower-bound distance 

for box A

Pi  

Figure 6.  Distance transformation for point Pi.  If we’ve 

processed Box A before we process Box B, we will not descend 

to Box B’s children, because Box B’s lower-bound distance is 

greater than Box A’s upper-bound distance. 
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  // Grab the next point 

  vector3 v = (*iter); 

 

  // Now we’re going to find the closest 

  // point in the tree (tree_root) to v... 

  //  

  // See below for the implementation of 

  // find_closest_point. 

  find_closest_point(v); 

 

  // Now output or do something useful 

  // with lowest_dist_sq and closest_point; 

  // these are the values that should be 

  // associated with v in our output  

  // distance map... 

  do_something_useful(); 

 

  // So it’s time to move on to the next 

  // voxel.  We’d like to exploit spatial 

  // coherence by giving the next voxel 

  // a "hint" about where to start looking 

  // in the tree.  See the explanation below 

  // for what this does; the summary is that 

  // it seeds 'boxes_to_descend' with a 

  // good starting point for the next voxel. 

  seed_next_voxel_search(); 

 

} 

   

// Find the closest point in our mesh to 

// the sample point v  

void find_closest_point(vector3 v) { 

 

  // Start with the root of the tree 

  boxes_to_descend.push_back(tree_root); 

 

  while(!(boxes_to_descend.empty)) { 

    AABBNode node = 

      boxes_to_descend.pop_front(); 

    process_node(node,v); 

  } 

 

} 

 

// Examine the given node and decide whether 

// we can discard it or whether we need to 

// visit his children.  If it’s a leaf,  

// compute an actual distance and store 

// it if it’s the closest so far. 

// 

// Used as a subroutine in the main voxel 

// loop (above). 

void process_node(AABBNode node, vector3 v){ 

 

  // Is this a leaf?  We assume we can get 

  // this from typing, or that the actual 

  // implementation uses polymorphism and 

  // avoids this check. 

  bool leaf = isLeaf(node); 

 

  // If it’s a leaf, we have no more 

  // descending to do, we just need to 

  // compute the distance to this triangle 

  // and see if it’s a winner. 

  if (leaf) { 

 

    // Imagine we have a routine that finds 

    // the distance from a point to a 

    // triangle; [7] provides an optimized 

    // routine with a thorough explanation. 

    float dsq; 

    vector3 closest_pt_on_tri; 

 

    // Find the closest point on our  

    // triangle (leaf.t) to v, and the 

    // squared distance to that point.  

    compute_squared_distance(v,leaf.t, 

      dsq,closest_pt_on_tri; 

 

    // Is this the shortest distance so far? 

    if (dsq < lowest_dist_sq) { 

 

      // Mark him as the closest we’ve seen 

      lowest_dist_sq = dsq; 

      closest_point = clost_pt_on_tri; 

      closest_point_node = node; 

 

      // Also mark him as the "lowest upper 

      // bound", because any future boxes 

      // whose lower bound is greater than 

      // this value should be discarded. 

      lowest_upper_dist_sq = dsq; 

    } 

 

    // This was a leaf; we’re done with him 

    // whether he was useful or not. 

    return; 

  } 

 

  // If this is not a leaf, let’s look at 

  // his lower- and upper-bound distances 

  // from v. 

  // 

  // Computing lower- and upper-bound  

  // distances to an axis-aligned bounding 

  // box is extremely fast; we just take  

  // the farthest plane on each axis 

  float best_dist = 0; 

  float worst_dist = 0; 

 

  // If I'm below the x range, my lowest 

  // x distance uses the minimum x, and 

  // my highest uses the maximum x 

  if (v.x < node.box.xyzmin.x) {    

    best_dist += node.box.xyzmin.x - v.x; 

    worst_dist += node.box.xyzmax.x - v.x; 

  } 

 

  // If I'm above the x range, my lowest x 

  // distance uses the maximum x, and my  

  // highest uses the minimum x 

  else if (v.x > node.box.xyzmax.x) { 

    best_dist += v.x - node.box.xyzmax.x; 

    worst_dist += v.x - node.box.xyzmin.x; 

  } 

 

  // If I'm _in_ the x range, x doesn't 

  // affect my lowest distance, and my  

  // highest-case distance goes to the 

  // _farther_ of the two x distances 

  else { 

    float dmin = 

       fabs(node.box.xyzmin.x - v.x); 

    float dmax = 
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       fabs(node.box.xyzmax.x - v.x); 

    double d_worst = (dmin>dmax)?dmin:dmax; 

    worst_dist += d_worst; 

  } 

 

  // Repeat for y and z... 

 

  // Convert to squared distances 

  float lower_dsq = best_dist * best_dist; 

  float upper_dsq = worst_dist * worst_dist; 

 

  // If his lower-bound squared distance 

  // is greater than lowest_upper_dist_sq, 

  // he can’t possibly hold the closest 

  // point, so we can discard this box and 

  // his children. 

  if (lower_dsq > lowest_upper_dist_sq) 

    return; 

   

  // Check whether I’m the lowest  

  // upper-bound that we’ve seen so far, 

  // so we can later prune away 

  // non-candidate boxes. 

  if (upper_dsq < lowest_upper_dist_sq) { 

    lowest_upper_dist_sq = upper_dsq; 

  } 

 

  // If this node _could_ contain the  

  // closest point, we need to process his  

  // children. 

  // 

  // Since we pop new nodes from the front  

  // of the list, pushing nodes to the front  

  // here results in a depth-first search,  

  // and pushing nodes to the back here  

  // results in a breadth-first search.  A  

  // more formal analysis of this tradeoff  

  // will follow in section 3.4. 

  boxes_to_descend.push_front(node.left); 

  boxes_to_descend.push_front(node.right); 

 

  // Or, for breadth-first search... 

  // boxes_to_descend.push_back(node.left); 

  // boxes_to_descend.push_back(node.right); 

} 

 

When we‟ve finished a voxel and it‟s time to move on to the next 

voxel, we‟d like to exploit spatial coherence by giving the next 

voxel a “hint” about where to start looking in the tree.   We expect 

the node that contains the closest point to the next voxel to be a 

“near sibling” of the node containing the closest point to the 

current voxel, so we‟ll let the next voxel‟s search begin at a 

nearby location in the tree by walking a couple nodes up from the 

best location for this voxel. 

The constant TREE_ASCEND_N controls how far up the tree we 

walk to find our “seed point” for the next voxel.  Higher values 

assume less spatial coherence and require more searching in the 

case that the next voxel is extremely close to the current voxel.  

Lower values assume more spatial coherence and optimize the 

case in which subsequent voxels are very close, while running a 

higher risk of a complete search. 

Section 3.4 discusses the selection of an optimal value for 

TREE_ASCEND_N. 

void seed_next_voxel_search() { 

 

  // Start at the node that contained our 

  // closest point and walk a few levels 

  // up the tree. 

  AABBNode seed_node = closest_point_node; 

  for(int i=0; i<TREE_ASCEND_N; i++) { 

    if (seed_node.parent == 0) break; 

    else seed_node = seed_node.parent;  

  } 

 

  // Put this seed node on the search list 

  // to be processed with the next voxel. 

  boxes_to_descend.push_back(seed_node); 

 

} 

 

In summary, for each voxel in Pi we track the lowest upper-bound 

distance that we‟ve found for a box as we descend our AABB 

tree, and discard boxes whose lower-bound distance is larger.  

When we reach a leaf node, we explicitly compute distances and 

compare to the lowest distance we found so far.  We exploit 

spatial coherence when processing a voxel by first searching a 

small subtree in which we found the closest point for the previous 

voxel. 

3.4 Implementation and Results 
The approach presented here was evaluated in the context of 

generating internal distance fields (finding and processing only 

voxels that lie inside a closed mesh) during the process of 

voxelization.  Voxelizer is an application written in C++ that loads 

meshes and uses a flood-filling process to generate voxel 

representations of those meshes, optionally including distance 

fields.  Both the flood-filling and the distance-field generation use 

the public-domain AABB tree available in CHAI [10]. 

To evaluate the suitability of our approach and the benefit of our 

exploitation of spatial coherence, we generated voxel arrays and 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
 

Figure 7. Meshes used for evaluating distance map 

computation.  (a) Gear: 1000 triangles. (b) Happy: 16000 

triangles. (c) Dragon: 203000 triangles (d) Bunny: 70,000 

triangles. 
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distance fields for a variety of meshes (Figures 7 and 8) at a 

variety of voxel densities and a variety of values for 

TREE_ASCEND_N (see above).  Furthermore, at each parameter 

set, we generated distance fields using both depth- and breadth-

first search.  The following sections discuss the performance 

results from these experiments. 

OVERALL PERFORMANCE 

Table 1 shows the computation time for flood-filling and distance-

field generation for each of the four test meshes at a variety of 

resolutions.  The voxel arrays generated represent surface and 

internal voxels only; the full distance field for voxels outside the 

mesh is not generated.  “Long axis resolution” indicates the 

number of voxels into which the longest axis of the mesh‟s 

bounding-box is divided; voxels are isotropic so the resolutions of 

the other axes are determined by this value. 

We note that for small resolutions, on the order of 30 voxels, 

times for distance computation are interactive or nearly 

interactive, even for complex meshes.  We also note that in 

general, distance computation represents the significant majority 

of the total time required to perform the combined flood-filling 

and distance-field generation (on average, distance-field 

generation represents 86% of the total time). 

Figure 9 shows the dependence of computation time on long axis 

resolution for all four meshes.  As expected, all meshes display an 

exponential increase in computation time as voxel resolution 

increases, but even at very high resolutions, computation time is 
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Figure 9. Performance of our distance-map computation 

approach on all four meshes at a variety of mesh resolutions.   

Mesh Triangles Long axis resolution Voxels Total time (s) Distance time (s) 

bunny 70k 30 7168 0.736 0.683 

bunny 70k 75 95628 6.107 5.282 

bunny 70k 135 529024 29.033 25.258 

bunny 70k 195 1561728 82.341 71.585 

gear 1k 30 4156 0.144 0.117 

gear 1k 75 54270 1.751 1.383 

gear 1k 135 286813 9.228 7.282 

gear 1k 195 829321 27.137 21.387 

happy 16k 30 2020 .13495 .1177 

happy 16k 75 25308 1.387 1.208 

happy 16k 135 132910 6.132 5.261 

happy 16k 195 381120 16.956 14.48 

dragon 203k 30 2550 0.494 0.47 

dragon 203k 75 31674 3.158 2.859 

dragon 203k 135 164061 11.839 10.558 

dragon 203k 195 468238 30.13 26.633 
 

Table 1.  A comparison of flood-filling and distance-computation times for all four meshes at a variety of voxel resolutions. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
 

Figure 8. The same meshes displayed in Figure 7, after using 

the voxelizer application to identify internal voxels (voxel 

centers are in green for surface voxels and red for internal 

voxels) by flood-filling.  The long axis resolution in each case 

here is 50 voxels. 



 9 

tractable for preprocessing applications (only above one minute 

for one of the four meshes and only above a long axis resolution 

of 180 voxels). 

SPATIAL COHERENCE 

To analyze the benefit of exploiting spatial coherence in distance-

map computation, and to identify the optimal value of 

TREE_ASCEND_N (the number of tree levels to step up in 

generating a “hint” location for the next voxel‟s distance search), 

voxel arrays and distance fields were generated for all four meshes 

with various values of TREE_ASCEND_N.  Figure 10 shows the 

results for the “happy” mesh (this mesh was chosen arbitrarily; 

results were similar for all four meshes).  A TREE_ASCEND_N 

value of -1 indicated that spatial coherence was not exploited at 

all; i.e. every distance search started at the top of the tree.  A value 

of 0 indicated that the “hint” node was the leaf node (a single 

triangle) that contained the shortest distance for the previous 

voxel. 

Exploting spatial coherence yields five-fold improvement in 

performance (a reduction in distance field time from 62 seconds to 

13 seconds) for the largest resolution shown in Figure 10.  This 

corresponds to the difference between TREE_ASCEND_N values 

of 0 and 1.  Further increasing TREE_ASCEND_N does not 

further improve performance; it is clear in Figure 10 that zero is 

the optimal value.  This is equivalent to assuming that locality 

extends as far as the closest triangle; it isn‟t worth searching 

neighboring AABB nodes as well before searching the whole tree. 

DEPTH- VS. BREADTH-FIRST SEARCH 

To compare the use of depth- and breadth-first distance search, 

voxel arrays and distance fields were generated for all four meshes 

using each approach.  Figure 11 shows the results when using the 

optimal TREE_ASCEND_N value of 0.  Depth-first search is 

consistently better, but by a very small margin. 

When spatial coherence is not exploited – which serves as a 

surrogate for the case in which the point set is not sorted and does 

not provide strong spatial coherence – depth-first search performs 

significantly better.  This is illustrated in Figure 12, which shows 

results for the “happy” mesh at various resolutions with no 

assumption of spatial coherence. 

IMPLEMENTATION AVAILABILITY 

A binary version of this application, with documentation and the 

models used in these experiments, is available online at: 

http://cs.stanford.edu/~dmorris/voxelizer 

Voxelizer is currently used to generate the voxel meshes used in 

[23]; distance fields are used to shade voxels based on their 

distances to anatomic structures. 

Future work will include leveraging the obvious parallelism 

available in this approach; voxels are processed nearly 

independently and could easily be distributed across machines 

with a nearly linear speedup.  Furthermore, the simple nature of 

the computations performed here makes this suitable to 

parallelization across simple processing units, such as those 

available on commercial GPU‟s, which have been successfully 

used to process AABB-based collision queries by [24].  We 

would also like to explore the performance impact of using other 

bounding-volume hierarchies (e.g. oriented-bounding-box trees 

and sphere trees), which fit trivially into our framework. 
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Figure 10. Performance benefit of exploiting spatial coherence 

and optimal value selection for TREE_ASCEND_N (results 

shown here are for the “happy” mesh).  A value of -1 indicated 

that spatial coherence was not exploited at all.  A value of 0 

indicated that the “hint” node was the leaf node (a single 

triangle) that contained the shortest distance for the previous 

voxel. 
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Figure 11. Comparison of depth- and breadth-first search for 

the “happy” mesh using a TREE_ASCEND_N value of 0 

(optimal). 
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Figure 12. Comparison of depth- and breadth-first search for 

the “happy” mesh using a TREE_ASCEND_N value of -1 (no 

exploitation of spatial coherence). 

http://cs.stanford.edu/~dmorris/voxelizer
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4. HAPTIC DATA LOGGING 

4.1 Background 
It is conventionally accepted that a user will begin to notice 

discretization artifacts in a haptic rendering system if the system‟s 

update rate falls below 1kHz.  Furthermore, as a haptic 

application‟s update rate falls, the system becomes more prone to 

instability and constraint violation.  With this in mind, it is 

essential that designers of haptic software structure applications to 

allow high-bandwidth, low-latency generation of haptic forces. 

There are two relevant implications of this requirement.  First of 

all, haptic computation must run on a thread that allows 

computation at 1kHz.  This is non-trivial on single-CPU systems 

running non-real-time operating systems, which typically have 

thread timeslices of 15ms or more.  In other words, naively 

sharing the CPU among a haptic application thread and other 

application or system threads will not nearly provide the necessary 

performance.  Boosting thread and process priority is a simple 

solution that is offered by common OS‟s, but indiscriminately 

boosting thread priority can prevent other application tasks (e.g. 

graphic rendering) and even critical operating system services 

from running.  Common solutions to this problem include using 

dual-CPU PC‟s, boosting thread priority while manually ensuring 

that the persistent haptic loop will yield periodically, and/or using 

hardware-triggered callbacks to control the rate of haptic force 

computation. 

Additionally, this stringent performance constraint means that 

“slow” tasks (those that require more than one millisecond on a 

regular basis) cannot be placed in the critical path of a haptic 

application.  Graphic rendering, for example, is often 

computationally time-consuming and is generally locked to the 

refresh rate of the display, allowing a peak throughput of 

approximately 30Hz on most systems (lower if the graphical scene 

is particularly complex).  For this reason, nearly all visuohaptic 

applications decouple graphic and haptic rendering into separate 

threads. 

Disk I/O is another task that incurs high latencies (often over 

10ms), particularly when bandwidth is high.  For a haptic 

application that requires constantly logging haptic data to disk – 

such as a psychophysical experiment involving a haptic device – it 

is essential to place blocking disk I/O on a thread that is distinct 

from the haptic rendering thread. 

Using this common scheme, data synchronization between a 

haptic thread (which collects position data from the haptic device, 

computes forces, and sends forces to the device) and a “slow” 

thread (handling graphics and disk I/O) can become a bottleneck.  

Traditional locks allow the slow thread to block the haptic thread, 

and if the locked region includes a high-latency operation, the 

haptic thread can stall for an unacceptable period.  Many 

applications are able reduce the data exchanged among threads to 

a few vectors or small matrices, and forego synchronization 

entirely since the probability and impact of data conflicts are rare. 

Data logging tasks, however, cannot take this approach.  Even 

small errors resulting from race conditions can place data files in 

an unrecoverable state.  Furthermore, the high bandwidth of data 

flow increases the probability of conflicts if data queued for file 

output is stored in a traditional linked list.  We thus present a data 

structure that allows lock-free synchronization between a 

producer thread and a consumer thread, with the constraint that 

the consumer thread does not need to access data immediately 

after the data are produced.  The only synchronization primitive 

required is an atomic pointer-sized write, provided by all current 

hardware.  This structure does not address sleeping; it‟s assumed 

that the producer never sleeps (it‟s a high-priority loop).  

Periodically waking the consumer – who might sleep – is a trivial 

extension. 

We present this approach in the context of a haptic application, 

but it‟s equally applicable to other applications with similar 

threading structures, for example neurophysiological and 

psychophysical experiments.  For example, the implementation 

discussed here is used by the software presented in [11], which is 

used in the experiments presented in [12]. 

4.2 Data Structure 
The data structure presented is labeled a “blocked linked list” 

(BLL).  The BLL is a linked list of blocks of data records; the 

list‟s head pointer is manipulated only by the consumer, and the 

list‟s tail pointer is manipulated only by the producer.  The BLL is 

initialized so that the head and tail pointers point to a single 

block.  In pseudocode: 

struct bll_record { 

  // the relevant data structure is defined 

  // here; in practice the BLL is templated 

  // and this structure is not explicitly 

  // defined 

}; 

 

struct bll_block { 

 

  // the data stored in this block 

  bll_record data[BLOCK_SIZE]; 

 

  // how many data records have actually 

  // been inserted? 

  int count=0; 

 

  // conventional linked list next pointer 

  bll_block* next=0; 

 

}; 

 

struct BLL { 

 

  // conventional linked list head/tail ptrs 

  bll_block *head,*tail; 

 

  // initialize to a new node 

  BLL() { head = tail = new bll_block; } 

 

}; 

 

The BLL offers the following interface: 

// This function is called only by the 

// producer (haptic) thread to insert a new 

// piece of data into the BLL. 

void BLL::push_back(bll_record& d) { 

 

  // If we’ve filled up a block,  

  // allocate a new one.  There’s no 

  // risk of conflict because the 
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  // consumer never accesses the tail. 

  if (tail->count == BLOCK_SIZE) { 

 

    bll_block* newtail = new bll_block; 

    newtail->next = tail; 

 

    // After this, I can never touch 

    // the old tail again, since 

    // the consumer could be using it 

    tail = newtail; 

 

  } 

 

  // Insert the new data record 

  tail->data[count] = d; 

  count++; 

 

} 

 

// This function is called only by the 

// consumer (logging) thread to flush 

// all available data to disk 

void BLL::safe_flush() { 

   

  // If the tail pointer changes during 

  // this call, after this statement, 

  // that’s fine; I’ll only log up to  

  // the tail at this instant.  I can’t 

  // access ‘tail’ directly for the rest 

  // of this call. 

  bll_block* mytail = tail; 

 

  // If there are no filled blocks, this 

  // loop won’t run; no harm done.   

  while(head != mytail) { 

 

    // Dump this whole block to disk or 

    // perform other high-latency operations 

    fwrite(head->data, 

      sizeof(bll_record),BLOCK_SIZE,myfile); 

 

    // Increment the head ptr and clean up 

    // what we’re done with 

    bll_block oldhead = head; 

    head = head->next; 

    delete oldhead; 

 

  } 

   

}; 

 

The central operating principle is that the push_back routine 

only accesses the current tail; when the tail is filled, a new block 

becomes the tail and this routine never touches the old tail again.  

The safe_flush routine flushes all blocks up to but not 

including the current tail.  If the current tail changes during this 

routine‟s execution, it may leave more than one block unflushed, 

but it will not conflict with the producer‟s push_back routine. 

These two routines comprise the important components of the 

data structure; required but not detailed here are additional 

initialization routines and a “tail flush” routine that flushes the 

current tail block and can be run when the producer is 

permanently finished or has downtime (the pseudocode above 

never flushes the last, partially-filled block).  The BLL also 

presents an O(N) routine for safe random element access by the 

consumer thread, allowing access to elements up to but not 

including the head block. 

4.3 Implementation and Results 
A template-based, C++ implementation of this data structure is 

available at: 

http://cs.stanford.edu/~dmorris/code/block_linked_list.h 

This implementation was used in [5], [11], and [12], and 

introduced no disk latency on the high-priority haptic/experiment 

threads. 

BLOCK_SIZE is a performance variable; in practice it is also 

templated but it need not be the same for every block.  Higher 

values improve bandwidth on the consumer thread, since larger 

disk writes are batched together and allocated memory is more 

localized, but may result in larger peak latencies on the consumer 

thread (due to larger writes).  Higher values of BLOCK_SIZE 

also increase the latency between production and consumption.  A 

BLOCK_SIZE value of 1000 was used in [5], [11], and [12]. 
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